A Non-linear Damage Model with Load Dependent Exponents for Solders under Sequential Cyclic Shear Loads

نویسندگان

  • Elviz George
  • Abhijit Dasgupta
چکیده

Title of Document: A NON-LINEAR DAMAGE MODEL WITH LOAD DEPENDENT EXPONENTS FOR SOLDERS UNDER SEQUENTIAL CYCLIC SHEAR LOADS Elviz George, Ph.D., 2015 Directed By: Professor Michael G. Pecht, Department of Mechanical Engineering The damage state of a material subject to cyclic loads is often characterized by the cycle ratio of applied cycles to the number of survivable cycles. The damage in a material under sequential cyclic loading is widely estimated using Miner’s rule. Miner’s rule assumes that damage in a material accumulates linearly under cyclic loading and the damage path is independent of the applied load level. Due to these inherent assumptions, Miner’s rule inaccurately estimates life under sequential loading conditions for solders. To improve the accuracy of damage estimation, a nonlinear damage accumulation model based on damage curve approach that takes into account the effect of loading sequence under sequential loading conditions is proposed for solders in this dissertation. In the proposed non-linear damage model, damage is related to the cycle ratio using a power law relationship where the power law (damage) exponent is defined as a function of the applied load level (cycles to failure). An experimental approach is proposed to determine the load dependent exponents of the non-linear model under three load levels. The test matrix consisted of a series of single level cyclic and sequential cyclic shear tests in a thermo-mechanical micro analyzer. Load dependent exponents were developed for SAC305 (96.5%Sn+3.0%Ag+0.5Cu) solder material and the applicability of these exponents were validated by tests under a new loading condition and reverse loading sequence. Experimental results revealed that the value of damage exponent decreased with the severity of the applied load level. Additionally, taking damage analogous to crack growth, an analytical relationship between the damage exponent and the applied load level was developed from the Paris’ law for crack propagation. This enables determination of non-linear damage curves at different load levels without conducting extensive experimentation. The damage due to crack initiation was assumed to be 10% of the total damage and sensitivity analysis was carried out to determine the effect of this assumption. The load dependence of the Paris’ law exponent (m) was also derived for SAC305 solder material. Analysis of the failed specimens revealed fatigue crack in the solder joints along the tin grain boundaries. A NON-LINEAR DAMAGE MODEL WITH LOAD DEPENDENT EXPONENTS FOR SOLDERS UNDER SEQUENTIAL CYCLIC SHEAR LOADS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Rate Dependent Durability of Low-ag Sac Interconnects for Area Array Packages under Torsion Loads

Title of Document: MODELING RATE DEPENDENT DURABILITY OF LOW-AG SAC INTERCONNECTS FOR AREA ARRAY PACKAGES UNDER TORSION LOADS Vikram Srinivas, Master of Science, 2010 Directed By: Chair Professor, Michael G. Pecht, Department of Mechanical Engineering The thesis discusses modeling rate-dependent durability of solder interconnects under mechanical torsion loading for surface mount area array com...

متن کامل

Cyclic Loading Tests for Cold-Formed Steel Wall Frames with Lightweight Concrete

Lightweight steel framing is a method in housing and construction that have been widely used in lightweight steel construction. In this method, the structure is built by cold formed steel elements. They are cost-effective, light, and easy to assemble. However, the performance of lateral load resisting systems in cold-formed steel structures specially the behavior of cold-formed steel shear wall...

متن کامل

A Simple Approach to Predict the Shear Capacity and Failure Mode of Fix-ended Reinforced Concrete Deep Beams based on Experimental Study

Reinforced Concrete (RC) deep beams are commonly used in structural design to transfer vertical loads when there is a vertical discontinuity in the load path. Due to their deep geometry, the force distribution within the RC deep beams is very different than the RC shallow beams. There are some strut and tie model (STM) already been developed for RC deep beams. However, most of these models are ...

متن کامل

Substructure Model for Concrete Behavior Simulation under Cyclic Multiaxial Loading

This paper proposes a framework for the constitutive model based on the semi-micromechanical aspects of plasticity, including damage progress for simulating behavior of concrete under multiaxial loading. This model is aimed to be used in plastic and fracture analysis of both regular and reinforced concrete structures, for the framework of sample plane crack approach. This model uses multilamina...

متن کامل

Finite Element Method for Static Cyclic Behavior of Steel Shear Wall with Corrugated Plates

The system of steel shear wall is an initiative resistance system against the lateral load such as an earthquake and the wind that has been researched in the last three decades. Currently, this system is noticed more than other systems because of adequate stiffness, ductility, and more energy absorption. The system of steel shear wall with corrugated sheets has been offered as an innovative sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015